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Some Classical (Un)Decidable Theories of Modules

® (Szmielew 1955) Th(Mod-Z) is decidable.
¢ (Baur, Kokorin-Mart’janov mid 70’s) Th(Mod-k(x, y}) is
undecidable.

® (Eklof-Fischer 1972) If k is a recursive field then Th(Mod-k[x]) is
decidable.

® (Baur 1976) Th(Mod-k[x, y]) is undecidable.

e (Baur 1980) If k is a recursive field then the theory of k-vector
spaces with 4 specified subspaces is decidable.

® (Baur 1975) If k is a recursive field then the theory of k-vector
spaces with 5 specified subspaces is undecidable.

e (Baur 1976) Th(Mod-Z/2°z[x | x?> = 0]) is undecidable.
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Wild = Undecidable (k = k)

Good partial results: The conjecture is true for finitely controlled wild
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Tame = Decidable (k = k)

Verified in some special cases: Finite representation type, tame hereditary
algebras, tame concealed algebra, tubular algebras.



Drozd's Dichotomy Theorem (k = k)
Finite-dimensional k-algebras split into 2 disjoint classes:
e Wild representation type: A finite-dimensional k-algebra A is wild
if for all finite-dimensional k-algebras 3 there exists a
representation embedding

F : fin-B — fin-A

i.e. Fis an exact k-linear functor which reflects isomorphism classes
and sends indecomposable modules to indecomposable modules.

Equivalently, A is wild if there exists a representation embedding
F :fin-k(x,y) — fin-A,

® Tame representation type: A finite-dimensional k-algebra A is
tame if, for every dimension d € N, there are k[x]-.A-bimodules
My, ..., Mgy, which are finitely generated and free as k[x]-modules,
such that almost all d-dimensional indecomposable A-modules are
of the form

KM/ (x=2) @pp Mi

for some 1 < < n(d) and some A € k.
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PFD Conjecture

Let A be a finite-dimensional algebra over a recursive field. The theory of
finite-dimensional A-modules, Th(fin-A), is undecidable if and only if A
is wild.

Theorem (Point-Prest)

Let A be a finite-dimensional algebra. If A is finite representation type
then Th(Mod-A) = Th(fin-A).

PFD: Wild = Undecidable

(k = k) Same good partial results as for Prest’s conjecture.
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Path Algebras of Quivers

A quiver Q = (Qo, Q1) is a finite directed graph with vertex set Qy and
set of arrows Q.

The path algebra kQ of Q is the k-algebra with k-basis the paths in @
including a (lazy) path e; for each i € Qo and multiplication of paths
given by concatenation.

Defining a kQ-module is “the same” as defining a representation of @ i.e.

((Vf)iEQm (¢a)aeQ1)

where
® for each i € Qp, V; is a k-vector space and

e foreach i - j € Q, o : Vi — V; is a k-linear map.
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Tame = Decidable: What can we do?

An observation
To prove that Th(fin-.A) is decidable, it is enough to show Th(fin-.A) is
recursively axiomatisable.

Definition
A ring is (right) hereditary if every submodule of a projective (right)
module is projective.

Theorem (G.)

Let A be a tame hereditary algebra over an infinite recursive field k with
an algorithm which answers whether a finite system of polynomial
equations over k in finitely many variables has a solution in k.

Then Th(fin-A) is decidable.
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A (right) pp-n-formula (over R) is a formula ¢(X) of the form

3y17...,ym/\2){,ru —i—Zyks,k =0

i=1 j=1

where rj, sy € R. We write ppj for the set of right pp-n-formulae and
rpp"” for the set of left pp-n-formulae.

For M € Mod-R, we write ¢(M) for the solution set of ¢ in M.

We order pp by setting ¢ > ¢ if and only if (M) 2 ¢(M) for all
M € Mod-R.

Let ¥, p € pp}? and N € N. We write

lo/] > N

for the sentence in the language of R-modules expressing in all

M € Mod-R that
lp(M)/ (M) N (M) = N.
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Pure-injective Modules

An embedding f : M — N is pure if for all p € pp}?,
@(N) N (M) = f(p(M)).

An R-module M is pure-injective if every pure-embedding M — N splits.

Fact
Every R-module is elementary equivalent to a direct sum of
indecomposable pure-injective modules.

Example: The indecomposable pure-injective abelian groups are:
® ForeachpcPand €N, Z/p'Z.
® The Priifer group Zpeo.
® The p-adic group Z\p.
°*Q



Pure - I"jeCHN' Abelian @mw'ps

lmZ/2'% = By Ealoo] = lim Z/2'Z

I

7/87 =: E,[3)]

.l

2/4/2— Em L4142

T |
al Z/QZ— 52[1 a49y

Q
WmZ/p'Z = E, E,[] :AliggZ/pZ
J 1
pradd s i g

o4 plﬁ Z/p°Z =: E,[2] ap + P7L

g

a ﬂo‘&, Z/pZ =: Ep1]
peP



Pseudofinite Abelian Groups



Pseudofinite Abelian Groups

An abelian group is pseudofinite if it satisfies all sentences in Th(fin-Z).



Pseudofinite Abelian Groups

An abelian group is pseudofinite if it satisfies all sentences in Th(fin-Z).

Fact: There is an order anti-isomorphism D : pp}? — rppL.



Pseudofinite Abelian Groups

An abelian group is pseudofinite if it satisfies all sentences in Th(fin-Z).

Fact: There is an order anti-isomorphism D : pp}? — rppL.

Theorem (Basarab; Herzog & Rothmaler)
For M € Mod-Z the following conditions are equivalent.
® M is pseudofinite.



Pseudofinite Abelian Groups

An abelian group is pseudofinite if it satisfies all sentences in Th(fin-Z).

Fact: There is an order anti-isomorphism D : pp}? — rppL.

Theorem (Basarab; Herzog & Rothmaler)
For M € Mod-Z the following conditions are equivalent.
® M is pseudofinite.
® For every pair of pp-formulae ¢/ and m € N,
|2/w(M)| > m if and only if |P¥/pp(M)| > m.



Pseudofinite Abelian Groups

An abelian group is pseudofinite if it satisfies all sentences in Th(fin-Z).

Fact: There is an order anti-isomorphism D : pp}? — rppL.

Theorem (Basarab; Herzog & Rothmaler)
For M € Mod-Z the following conditions are equivalent.
® M is pseudofinite.
® For every pair of pp-formulae ¢/ and m € N,
|2/w(M)| > m if and only if |P¥/pp(M)| > m.

® M is elementary equivalent to a direct sum of finite abelian groups,
Zp~ @ Zp for some p € P and Q.



Pseudofinite Abelian Groups

An abelian group is pseudofinite if it satisfies all sentences in Th(fin-Z).

Fact: There is an order anti-isomorphism D : pp}? — rppL.

Theorem (Basarab; Herzog & Rothmaler)
For M € Mod-Z the following conditions are equivalent.
® M is pseudofinite.
® For every pair of pp-formulae ¢/ and m € N,
|2/w(M)| > m if and only if |P¥/pp(M)| > m.
°* Mis e/q\nentary equivalent to a direct sum of finite abelian groups,
Zp~ @ Zp for some p € P and Q.

Example: Let p € P. For all M € Mod-Z,
|xp=0/x=0(M)| = |annyp| = |Hom(Z/pZ, M)| and
|PO=0)/Dxp=0)(M)| = [*=x/plx(M)| = |[M/Mp| = |Ext(Z/pZ, M)|.
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Pseudofinite-dimensional k[t]-modules

Theorem
For M € Mod-k[t] the following conditions are equivalent.

® M is pseudofinite-dimensional.
® For every pair of pp-formulae ¥/ and m € N,
|¢/w(M)| > m if and only if |D¥/Dp(M)| > m.
® M is elementary equiva/fgt to a direct sum of finite-dimensional
k[t]-modules, E,[oc] ® E, for some prime p <1 k[t] and k(t).
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Pseudofinite-dimensional kIK,-modules

Fact
The indecomposable pure-injective kIKo-modules are the

finite-dimensional indecomposable kIK>-modules, S,[c0], /5; and G.

Theorem (G.)

The pseudofinite kKKo-modules are those elementary equivalent to a
direct sum of finite-dimensional modules,

SeSla 6. @ S5 ad P Sl
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Fact Let A be tame hereditary. For all M, N € fin-A, the value of
dim Hom(M, N) — dim Ext(M, N)

is determined by the dimension vectors of M and N.

Therefore, if X, Y € finA have the same dimension vector and M € fin-A
then

|[Hom(X, M)| - |[Ext(Y, M)| = [Hom(Y, M)| - |[Ext(X, M)|.

Fact For any X € fin-A, there are pairs of pp-formulae ¢/v and o/7
such that for all M € Mod-A

[Hom(X, M)| = |#/4(M)] and [Ext(X, M)| = |o/=(M)|.
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Let A be a finite-dimensional algebra. Let ¢/ be a pp-pair and let KC be
a finite set of indecomposable finite-dimensional A-modules. There is a
pp-pair [¢/v]ic such that for all K € K,

|[e/v]c(K)| = 1 and [[#/v]x(M)] = |#/+(M)|

for all indecomposable pure-injective M ¢ K.
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Let A be a tame hereditary algebra over an infinite field. An A-module is
pseudofinite-dimensional if and only if it satisfies the following sentences.

For all X, Y € fin-A such that X and Y have the same dimension vector
and all finite sets of indecomposable finite-dimensional A-modules K,
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—Thank you—
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