Representation Type, Decidability and Pseudofinite-dimensional Modules over Finite-dimensional Algebras

Lorna Gregory

July 14th, 2025

• (Szmielew 1955) $Th(Mod-\mathbb{Z})$ is decidable.

- (Szmielew 1955) Th(Mod-Z) is decidable.
- (Baur, Kokorin-Mart'janov mid 70's) $\operatorname{Th}(\operatorname{\mathsf{Mod-}} k\langle x,y\rangle)$ is undecidable.

- (Szmielew 1955) Th(Mod-Z) is decidable.
- (Baur, Kokorin-Mart'janov mid 70's) $\operatorname{Th}(\operatorname{\mathsf{Mod-}} k\langle x,y\rangle)$ is undecidable.
- **(Eklof-Fischer 1972)** If k is a recursive field then $Th(\mathsf{Mod-}k[x])$ is decidable.

- (Szmielew 1955) Th(Mod-Z) is decidable.
- (Baur, Kokorin-Mart'janov mid 70's) $\operatorname{Th}(\operatorname{\mathsf{Mod-}} k\langle x,y\rangle)$ is undecidable.
- **(Eklof-Fischer 1972)** If k is a recursive field then $Th(\mathsf{Mod-}k[x])$ is decidable.
- (Baur 1976) Th(Mod-k[x, y]) is undecidable.

- (Szmielew 1955) $Th(Mod-\mathbb{Z})$ is decidable.
- (Baur, Kokorin-Mart'janov mid 70's) $\operatorname{Th}(\operatorname{\mathsf{Mod-}} k\langle x,y\rangle)$ is undecidable.
- (Eklof-Fischer 1972) If k is a recursive field then Th(Mod-k[x]) is decidable.
- (Baur 1976) Th(Mod-k[x, y]) is undecidable.
- (Baur 1980) If *k* is a recursive field then the theory of *k*-vector spaces with 4 specified subspaces is decidable.

- (Szmielew 1955) Th(Mod-Z) is decidable.
- (Baur, Kokorin-Mart'janov mid 70's) $\operatorname{Th}(\operatorname{\mathsf{Mod-}} k\langle x,y\rangle)$ is undecidable.
- (Eklof-Fischer 1972) If k is a recursive field then $Th(\mathsf{Mod}\text{-}k[x])$ is decidable.
- (Baur 1976) Th(Mod-k[x, y]) is undecidable.
- (Baur 1980) If *k* is a recursive field then the theory of *k*-vector spaces with 4 specified subspaces is decidable.
- (Baur 1975) If *k* is a recursive field then the theory of *k*-vector spaces with 5 specified subspaces is undecidable.

- (Szmielew 1955) Th(Mod-Z) is decidable.
- (Baur, Kokorin-Mart'janov mid 70's) $\operatorname{Th}(\operatorname{\mathsf{Mod-}} k\langle x,y\rangle)$ is undecidable.
- (Eklof-Fischer 1972) If k is a recursive field then $Th(\mathsf{Mod}\text{-}k[x])$ is decidable.
- (Baur 1976) Th(Mod-k[x, y]) is undecidable.
- (Baur 1980) If *k* is a recursive field then the theory of *k*-vector spaces with 4 specified subspaces is decidable.
- (Baur 1975) If *k* is a recursive field then the theory of *k*-vector spaces with 5 specified subspaces is undecidable.
- (Baur 1976) $\operatorname{Th}(\operatorname{\mathsf{Mod-}}\mathbb{Z}/2^9\mathbb{Z}[x\mid x^2=0])$ is undecidable.

Let $\mathcal A$ be a finite-dimensional algebra over a recursive field. The theory of $\mathcal A$ -modules is undecidable if and only if $\mathcal A$ is wild.

Finite-dimensional k-algebras split into 2 disjoint classes:

Finite-dimensional k-algebras split into 2 disjoint classes:

• Wild representation type:

Finite-dimensional *k*-algebras split into 2 disjoint classes:

• Wild representation type:

Finite-dimensional *k*-algebras split into 2 disjoint classes:

Wild representation type: A finite-dimensional k-algebra A is wild
if for all finite-dimensional k-algebras B there exists a
representation embedding

$$F: \mathsf{fin}\text{-}\mathcal{B} \to \mathsf{fin}\text{-}\mathcal{A}$$

Finite-dimensional *k*-algebras split into 2 disjoint classes:

Wild representation type: A finite-dimensional k-algebra A is wild
if for all finite-dimensional k-algebras B there exists a
representation embedding

$$F: \mathsf{fin}\text{-}\mathcal{B} \to \mathsf{fin}\text{-}\mathcal{A}$$

i.e. F is an exact k-linear functor which reflects isomorphism classes and sends indecomposable modules to indecomposable modules.

Finite-dimensional *k*-algebras split into 2 disjoint classes:

Wild representation type: A finite-dimensional k-algebra A is wild
if for all finite-dimensional k-algebras B there exists a
representation embedding

$$F: \mathsf{fin}\text{-}\mathcal{B} \to \mathsf{fin}\text{-}\mathcal{A}$$

i.e. F is an exact k-linear functor which reflects isomorphism classes and sends indecomposable modules to indecomposable modules.

Equivalently, \mathcal{A} is wild if there exists a representation embedding $F: \operatorname{fin-}k\langle x,y\rangle \to \operatorname{fin-}\mathcal{A}.$

Finite-dimensional *k*-algebras split into 2 disjoint classes:

Wild representation type: A finite-dimensional k-algebra A is wild
if for all finite-dimensional k-algebras B there exists a
representation embedding

$$F: \mathsf{fin}\text{-}\mathcal{B} \to \mathsf{fin}\text{-}\mathcal{A}$$

i.e. F is an exact k-linear functor which reflects isomorphism classes and sends indecomposable modules to indecomposable modules.

Equivalently, \mathcal{A} is wild if there exists a representation embedding $F: \operatorname{fin-}k\langle x,y\rangle \to \operatorname{fin-}\mathcal{A}.$

• Tame representation type: A finite-dimensional k-algebra \mathcal{A} is tame if, for every dimension $d \in \mathbb{N}$,

Finite-dimensional *k*-algebras split into 2 disjoint classes:

Wild representation type: A finite-dimensional k-algebra A is wild
if for all finite-dimensional k-algebras B there exists a
representation embedding

$$F: \mathsf{fin}\text{-}\mathcal{B} \to \mathsf{fin}\text{-}\mathcal{A}$$

i.e. F is an exact k-linear functor which reflects isomorphism classes and sends indecomposable modules to indecomposable modules.

Equivalently, \mathcal{A} is wild if there exists a representation embedding $F: \operatorname{fin-}k\langle x,y\rangle \to \operatorname{fin-}\mathcal{A}.$

• Tame representation type: A finite-dimensional k-algebra \mathcal{A} is tame if, for every dimension $d \in \mathbb{N}$, there are k[x]- \mathcal{A} -bimodules $M_1,...,M_{n(d)}$, which are finitely generated and free as k[x]-modules,

Finite-dimensional *k*-algebras split into 2 disjoint classes:

Wild representation type: A finite-dimensional k-algebra A is wild
if for all finite-dimensional k-algebras B there exists a
representation embedding

$$F: \mathsf{fin}\text{-}\mathcal{B} \to \mathsf{fin}\text{-}\mathcal{A}$$

i.e. F is an exact k-linear functor which reflects isomorphism classes and sends indecomposable modules to indecomposable modules.

Equivalently, \mathcal{A} is wild if there exists a representation embedding $F: \operatorname{fin-}k\langle x,y\rangle \to \operatorname{fin-}\mathcal{A}.$

• Tame representation type: A finite-dimensional k-algebra \mathcal{A} is **tame** if, for every dimension $d \in \mathbb{N}$, there are k[x]- \mathcal{A} -bimodules $M_1, ..., M_{n(d)}$, which are finitely generated and free as k[x]-modules, such that almost all d-dimensional indecomposable \mathcal{A} -modules are of the form

$$k[x]/\langle x-\lambda\rangle\otimes_{k[x]}M_i$$

for some $1 \le i \le n(d)$ and some $\lambda \in k$.

Let $\mathcal A$ be a finite-dimensional algebra over a recursive field. The theory of $\mathcal A$ -modules is undecidable if and only if $\mathcal A$ is wild.

Let $\mathcal A$ be a finite-dimensional algebra over a recursive field. The theory of $\mathcal A$ -modules is undecidable if and only if $\mathcal A$ is wild.

Wild \Rightarrow Undecidable $(k = \overline{k})$

Let $\mathcal A$ be a finite-dimensional algebra over a recursive field. The theory of $\mathcal A$ -modules is undecidable if and only if $\mathcal A$ is wild.

Wild \Rightarrow Undecidable $(k = \overline{k})$

Good partial results: The conjecture is true for finitely controlled wild algebras + seemingly not hard to prove for particular wild algebras.

Let $\mathcal A$ be a finite-dimensional algebra over a recursive field. The theory of $\mathcal A$ -modules is undecidable if and only if $\mathcal A$ is wild.

Wild
$$\Rightarrow$$
 Undecidable $(k = \overline{k})$

Good partial results: The conjecture is true for finitely controlled wild algebras + seemingly not hard to prove for particular wild algebras.

Tame
$$\Rightarrow$$
 Decidable $(k = \overline{k})$

Let $\mathcal A$ be a finite-dimensional algebra over a recursive field. The theory of $\mathcal A$ -modules is undecidable if and only if $\mathcal A$ is wild.

Wild \Rightarrow Undecidable $(k = \overline{k})$

Good partial results: The conjecture is true for finitely controlled wild algebras + seemingly not hard to prove for particular wild algebras.

Tame
$$\Rightarrow$$
 Decidable $(k = \overline{k})$

Verified in some special cases: Finite representation type, tame hereditary algebras, tame concealed algebra, tubular algebras.

Finite-dimensional *k*-algebras split into 2 disjoint classes:

Wild representation type: A finite-dimensional k-algebra A is wild
if for all finite-dimensional k-algebras B there exists a
representation embedding

$$F: \mathsf{fin}\text{-}\mathcal{B} \to \mathsf{fin}\text{-}\mathcal{A}$$

i.e. F is an exact k-linear functor which reflects isomorphism classes and sends indecomposable modules to indecomposable modules.

Equivalently, \mathcal{A} is wild if there exists a representation embedding $F: \operatorname{fin-}k\langle x,y\rangle \to \operatorname{fin-}\mathcal{A}.$

• Tame representation type: A finite-dimensional k-algebra \mathcal{A} is tame if, for every dimension $d \in \mathbb{N}$, there are k[x]- \mathcal{A} -bimodules $M_1, ..., M_{n(d)}$, which are finitely generated and free as k[x]-modules, such that almost all d-dimensional indecomposable \mathcal{A} -modules are of the form

$$k[x]/\langle x-\lambda\rangle\otimes_{k[x]}M_i$$

for some $1 \le i \le n(d)$ and some $\lambda \in k$.

Let $\mathcal A$ be a finite-dimensional algebra over a recursive field. The theory of finite-dimensional $\mathcal A$ -modules, $\mathrm{Th}(\mathrm{fin-}\mathcal A)$, is undecidable if and only if $\mathcal A$ is wild.

Let \mathcal{A} be a finite-dimensional algebra over a recursive field. The theory of finite-dimensional \mathcal{A} -modules, $\mathrm{Th}(\mathrm{fin-}\mathcal{A})$, is undecidable if and only if \mathcal{A} is wild.

Theorem (Point-Prest)

Let \mathcal{A} be a finite-dimensional algebra. If \mathcal{A} is finite representation type then $Th(\mathsf{Mod-}\mathcal{A}) = Th(\mathsf{fin-}\mathcal{A})$.

Let \mathcal{A} be a finite-dimensional algebra over a recursive field. The theory of finite-dimensional \mathcal{A} -modules, $\mathrm{Th}(\mathrm{fin-}\mathcal{A})$, is undecidable if and only if \mathcal{A} is wild.

Theorem (Point-Prest)

Let \mathcal{A} be a finite-dimensional algebra. If \mathcal{A} is finite representation type then $\mathit{Th}(\mathsf{Mod}\text{-}\mathcal{A}) = \mathit{Th}(\mathsf{fin}\text{-}\mathcal{A})$.

PFD: Wild ⇒ Undecidable

Let \mathcal{A} be a finite-dimensional algebra over a recursive field. The theory of finite-dimensional \mathcal{A} -modules, $\mathrm{Th}(\mathrm{fin-}\mathcal{A})$, is undecidable if and only if \mathcal{A} is wild.

Theorem (Point-Prest)

Let \mathcal{A} be a finite-dimensional algebra. If \mathcal{A} is finite representation type then $Th(\mathsf{Mod-}\mathcal{A}) = Th(\mathsf{fin-}\mathcal{A})$.

PFD: Wild ⇒ Undecidable

 $(k = \overline{k})$ Same good partial results as for Prest's conjecture.

Tame \Rightarrow Decidable: What can we do?

Tame \Rightarrow Decidable: What can we do?

An observation

To prove that $\mathrm{Th}(\mathsf{fin}\text{-}\mathcal{A})$ is decidable, it is enough to show $\mathrm{Th}(\mathsf{fin}\text{-}\mathcal{A})$ is recursively axiomatisable.

Tame \Rightarrow Decidable: What can we do?

An observation

To prove that $\mathrm{Th}(\mathsf{fin}\text{-}\mathcal{A})$ is decidable, it is enough to show $\mathrm{Th}(\mathsf{fin}\text{-}\mathcal{A})$ is recursively axiomatisable.

Definition

A ring is (right) **hereditary** if every submodule of a projective (right) module is projective.

Path Algebras of Quivers

A **quiver** $Q = (Q_0, Q_1)$ is a finite directed graph with vertex set Q_0 and set of arrows Q_1 .

Path Algebras of Quivers

A **quiver** $Q = (Q_0, Q_1)$ is a finite directed graph with vertex set Q_0 and set of arrows Q_1 .

The **path algebra** kQ of Q is the k-algebra with k-basis the paths in Q including a (lazy) path e_i for each $i \in Q_0$

Path Algebras of Quivers

A **quiver** $Q = (Q_0, Q_1)$ is a finite directed graph with vertex set Q_0 and set of arrows Q_1 .

The **path algebra** kQ of Q is the k-algebra with k-basis the paths in Q including a (lazy) path e_i for each $i \in Q_0$ and multiplication of paths given by concatenation.

Path Algebras of Quivers

A **quiver** $Q = (Q_0, Q_1)$ is a finite directed graph with vertex set Q_0 and set of arrows Q_1 .

The **path algebra** kQ of Q is the k-algebra with k-basis the paths in Q including a (lazy) path e_i for each $i \in Q_0$ and multiplication of paths given by concatenation.

Defining a kQ-module is "the same" as defining a representation of Q

Path Algebras of Quivers

A **quiver** $Q = (Q_0, Q_1)$ is a finite directed graph with vertex set Q_0 and set of arrows Q_1 .

The **path algebra** kQ of Q is the k-algebra with k-basis the paths in Q including a (lazy) path e_i for each $i \in Q_0$ and multiplication of paths given by concatenation.

Defining a kQ-module is "the same" as defining a representation of Q i.e.

$$\big((V_i)_{i\in Q_0}, (\Phi_\alpha)_{\alpha\in Q_1}\big)$$

where

Path Algebras of Quivers

A **quiver** $Q = (Q_0, Q_1)$ is a finite directed graph with vertex set Q_0 and set of arrows Q_1 .

The **path algebra** kQ of Q is the k-algebra with k-basis the paths in Q including a (lazy) path e_i for each $i \in Q_0$ and multiplication of paths given by concatenation.

Defining a kQ-module is "the same" as defining a representation of Q i.e.

$$((V_i)_{i\in Q_0},(\Phi_\alpha)_{\alpha\in Q_1})$$

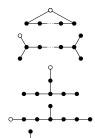
where

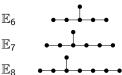
- for each $i \in Q_0$, V_i is a k-vector space and
- for each $i \xrightarrow{\alpha} j \in Q_1$, $\Phi_{\alpha} : V_i \to V_j$ is a k-linear map.

Tame Quivers

Dynkin Graphs

Extended Dynkin Graphs





Tame \Rightarrow Decidable: What can we do?

An observation

To prove that $\mathrm{Th}(\mathsf{fin}\text{-}\mathcal{A})$ is decidable, it is enough to show $\mathrm{Th}(\mathsf{fin}\text{-}\mathcal{A})$ is recursively axiomatisable.

Definition

A ring is (right) **hereditary** if every submodule of a projective (right) module is projective.

Tame \Rightarrow Decidable: What can we do?

An observation

To prove that $\mathrm{Th}(\mathsf{fin}\text{-}\mathcal{A})$ is decidable, it is enough to show $\mathrm{Th}(\mathsf{fin}\text{-}\mathcal{A})$ is recursively axiomatisable.

Definition

A ring is (right) **hereditary** if every submodule of a projective (right) module is projective.

Theorem (G.)

Let A be a tame hereditary algebra over an infinite recursive field k with an algorithm which answers whether a finite system of polynomial equations over k in finitely many variables has a solution in k.

Tame \Rightarrow Decidable: What can we do?

An observation

To prove that $\mathrm{Th}(\mathsf{fin}\text{-}\mathcal{A})$ is decidable, it is enough to show $\mathrm{Th}(\mathsf{fin}\text{-}\mathcal{A})$ is recursively axiomatisable.

Definition

A ring is (right) **hereditary** if every submodule of a projective (right) module is projective.

Theorem (G.)

Let $\mathcal A$ be a tame hereditary algebra over an infinite recursive field k with an algorithm which answers whether a finite system of polynomial equations over k in finitely many variables has a solution in k. Then $Th(\operatorname{fin-}\mathcal A)$ is decidable.

A (right) **pp**-*n*-**formula** (over *R*) is a formula $\varphi(\overline{x})$ of the form

$$\exists y_1, \dots, y_m \bigwedge_{i=1}^l \sum_{j=1}^n x_j r_{ij} + \sum_{k=1}^m y_k s_{ik} = 0$$

where $r_{ij}, s_{ik} \in R$.

A (right) **pp**-*n*-**formula** (over R) is a formula $\varphi(\overline{x})$ of the form

$$\exists y_1, \dots, y_m \bigwedge_{i=1}^{l} \sum_{j=1}^{n} x_j r_{ij} + \sum_{k=1}^{m} y_k s_{ik} = 0$$

where r_{ij} , $s_{ik} \in R$. We write pp_R^n for the set of right pp-n-formulae and Rpp^n for the set of left pp-n-formulae.

A (right) **pp**-*n*-**formula** (over *R*) is a formula $\varphi(\overline{x})$ of the form

$$\exists y_1, \dots, y_m \bigwedge_{i=1}^{l} \sum_{j=1}^{n} x_j r_{ij} + \sum_{k=1}^{m} y_k s_{ik} = 0$$

where r_{ij} , $s_{ik} \in R$. We write pp_R^n for the set of right pp-n-formulae and Rpp^n for the set of left pp-n-formulae.

For $M \in \text{Mod-}R$, we write $\varphi(M)$ for the solution set of φ in M.

A (right) **pp**-*n*-**formula** (over *R*) is a formula $\varphi(\overline{x})$ of the form

$$\exists y_1, \dots, y_m \bigwedge_{i=1}^{l} \sum_{j=1}^{n} x_j r_{ij} + \sum_{k=1}^{m} y_k s_{ik} = 0$$

where r_{ij} , $s_{ik} \in R$. We write pp_R^n for the set of right pp-n-formulae and Rpp^n for the set of left pp-n-formulae.

For $M \in \text{Mod-}R$, we write $\varphi(M)$ for the solution set of φ in M.

We order pp_R^n by setting $\varphi \ge \psi$ if and only if $\varphi(M) \supseteq \psi(M)$ for all $M \in \operatorname{Mod-}R$.

A (right) **pp**-*n*-**formula** (over R) is a formula $\varphi(\overline{x})$ of the form

$$\exists y_1, \dots, y_m \bigwedge_{i=1}^{l} \sum_{j=1}^{n} x_j r_{ij} + \sum_{k=1}^{m} y_k s_{ik} = 0$$

where r_{ij} , $s_{ik} \in R$. We write pp_R^n for the set of right pp-n-formulae and Rpp^n for the set of left pp-n-formulae.

For $M \in \text{Mod-}R$, we write $\varphi(M)$ for the solution set of φ in M.

We order pp_R^n by setting $\varphi \ge \psi$ if and only if $\varphi(M) \supseteq \psi(M)$ for all $M \in \operatorname{Mod-}R$.

Let $\psi, \varphi \in \operatorname{pp}^1_R$ and $N \in \mathbb{N}$.

A (right) **pp**-*n*-**formula** (over *R*) is a formula $\varphi(\overline{x})$ of the form

$$\exists y_1, \dots, y_m \bigwedge_{i=1}^{l} \sum_{j=1}^{n} x_j r_{ij} + \sum_{k=1}^{m} y_k s_{ik} = 0$$

where r_{ij} , $s_{ik} \in R$. We write pp_R^n for the set of right pp-n-formulae and pp^n for the set of left pp-n-formulae.

For $M \in \text{Mod-}R$, we write $\varphi(M)$ for the solution set of φ in M.

We order pp_R^n by setting $\varphi \ge \psi$ if and only if $\varphi(M) \supseteq \psi(M)$ for all $M \in \operatorname{Mod-}R$.

Let $\psi, \varphi \in pp_R^1$ and $N \in \mathbb{N}$. We write

$$|\varphi/\psi| = N$$

for the sentence in the language of R-modules expressing in all $M \in \mathsf{Mod}\text{-}R$ that

$$|\varphi(M)/\varphi(M)\cap\psi(M)|=N.$$

A (right) **pp**-*n*-**formula** (over *R*) is a formula $\varphi(\overline{x})$ of the form

$$\exists y_1, \dots, y_m \bigwedge_{i=1}^{l} \sum_{j=1}^{n} x_j r_{ij} + \sum_{k=1}^{m} y_k s_{ik} = 0$$

where r_{ij} , $s_{ik} \in R$. We write pp_R^n for the set of right pp-n-formulae and Rpp^n for the set of left pp-n-formulae.

For $M \in \text{Mod-}R$, we write $\varphi(M)$ for the solution set of φ in M.

We order pp_R^n by setting $\varphi \geq \psi$ if and only if $\varphi(M) \supseteq \psi(M)$ for all $M \in \operatorname{Mod-}R$.

Let $\psi, \varphi \in pp_R^1$ and $N \in \mathbb{N}$. We write

$$|\varphi/\psi| \geq N$$

for the sentence in the language of R-modules expressing in all $M \in \mathsf{Mod}\text{-}R$ that

$$|\varphi(M)/\varphi(M)\cap\psi(M)|\geq N.$$

An embedding $f: M \to N$ is **pure** if for all $\varphi \in pp_R^1$, $\varphi(N) \cap f(M) = f(\varphi(M))$.

An embedding $f: M \to N$ is **pure** if for all $\varphi \in pp_R^1$,

$$\varphi(N) \cap f(M) = f(\varphi(M)).$$

An *R*-module *M* is **pure-injective** if every pure-embedding $M \rightarrow N$ splits.

An embedding $f: M \to N$ is **pure** if for all $\varphi \in pp_R^1$,

$$\varphi(N) \cap f(M) = f(\varphi(M)).$$

An *R*-module *M* is **pure-injective** if every pure-embedding $M \rightarrow N$ splits.

Fact

Every *R*-module is elementary equivalent to a direct sum of indecomposable pure-injective modules.

An embedding $f: M \to N$ is **pure** if for all $\varphi \in pp_R^1$,

$$\varphi(N) \cap f(M) = f(\varphi(M)).$$

An *R*-module *M* is **pure-injective** if every pure-embedding $M \rightarrow N$ splits.

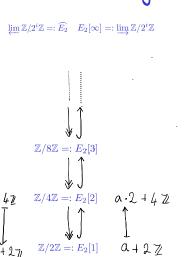
Fact

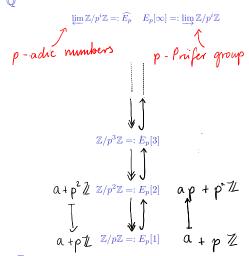
Every *R*-module is elementary equivalent to a direct sum of indecomposable pure-injective modules.

Example: The indecomposable pure-injective abelian groups are:

- For each $p \in \mathbb{P}$ and $i \in \mathbb{N}$, $\mathbb{Z}/p^i\mathbb{Z}$.
- The Prüfer group $\mathbb{Z}_{p^{\infty}}$.
- The p-adic group $\widehat{\mathbb{Z}}_p$.
- 0

Pure-Injective Abelian Groups





An abelian group is **pseudofinite** if it satisfies all sentences in $\mathrm{Th}(\mathsf{fin-}\mathbb{Z})$.

An abelian group is **pseudofinite** if it satisfies all sentences in $Th(fin-\mathbb{Z})$.

Fact: There is an order anti-isomorphism $D: pp_R^1 \to {}_R pp^1$.

An abelian group is **pseudofinite** if it satisfies all sentences in $Th(fin-\mathbb{Z})$.

Fact: There is an order anti-isomorphism $D: pp_R^1 \to {}_R pp^1$.

Theorem (Basarab; Herzog & Rothmaler)

For $M \in Mod-\mathbb{Z}$ the following conditions are equivalent.

M is pseudofinite.

An abelian group is **pseudofinite** if it satisfies all sentences in $Th(fin-\mathbb{Z})$.

Fact: There is an order anti-isomorphism $D: pp_R^1 \to {}_R pp^1$.

Theorem (Basarab; Herzog & Rothmaler)

For $M \in Mod-\mathbb{Z}$ the following conditions are equivalent.

- M is pseudofinite.
- For every pair of pp-formulae φ/ψ and $m \in \mathbb{N}$, $|\varphi/\psi(M)| \ge m$ if and only if $|D\psi/D\varphi(M)| \ge m$.

An abelian group is **pseudofinite** if it satisfies all sentences in $\mathrm{Th}(\mathrm{fin-}\mathbb{Z})$.

Fact: There is an order anti-isomorphism $D: pp_R^1 \to {}_R pp^1$.

Theorem (Basarab; Herzog & Rothmaler)

For $M \in Mod-\mathbb{Z}$ the following conditions are equivalent.

- M is pseudofinite.
- For every pair of pp-formulae φ/ψ and $m \in \mathbb{N}$, $|\varphi/\psi(M)| \geq m$ if and only if $|D\psi/D\varphi(M)| \geq m$.
- M is elementary equivalent to a direct sum of finite abelian groups, $\mathbb{Z}_{p^{\infty}} \oplus \widehat{\mathbb{Z}_p}$ for some $p \in \mathbb{P}$ and \mathbb{Q} .

An abelian group is **pseudofinite** if it satisfies all sentences in $Th(fin-\mathbb{Z})$.

Fact: There is an order anti-isomorphism $D: pp_R^1 \to {}_R pp^1$.

Theorem (Basarab; Herzog & Rothmaler)

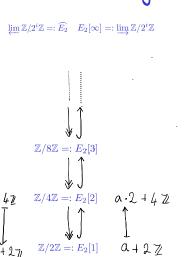
For $M \in Mod-\mathbb{Z}$ the following conditions are equivalent.

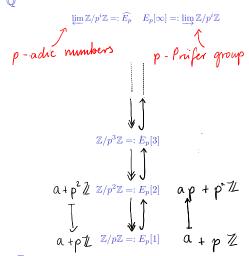
- M is pseudofinite.
- For every pair of pp-formulae φ/ψ and $m \in \mathbb{N}$, $|\varphi/\psi(M)| \ge m$ if and only if $|D\psi/D\varphi(M)| \ge m$.
- M is elementary equivalent to a direct sum of finite abelian groups, $\mathbb{Z}_{p^{\infty}} \oplus \widehat{\mathbb{Z}_p}$ for some $p \in \mathbb{P}$ and \mathbb{Q} .

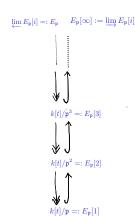
Example: Let $p \in \mathbb{P}$. For all $M \in \text{Mod-}\mathbb{Z}$,

$$|xp=0/x=0(M)| = |\operatorname{ann}_M p| = |\operatorname{Hom}(\mathbb{Z}/p\mathbb{Z}, M)|$$
 and $|D(x=0)/D(xp=0)(M)| = |x=x/p|x(M)| = |M/Mp| = |\operatorname{Ext}(\mathbb{Z}/p\mathbb{Z}, M)|.$

Pure-Injective Abelian Groups







 $\mathfrak{p} \lhd k[x]$ prime

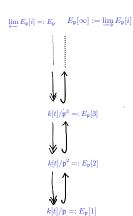
Pseudofinite-dimensional k[t]-modules

Pseudofinite-dimensional k[t]-modules

Theorem

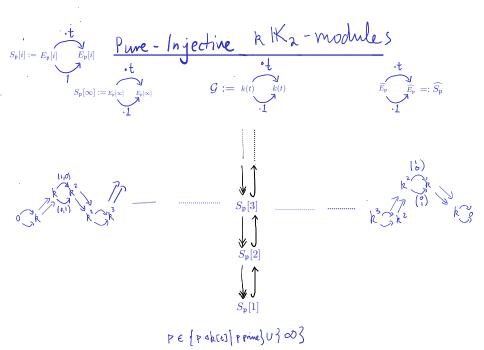
For $M \in Mod-k[t]$ the following conditions are equivalent.

- M is pseudofinite-dimensional.
- For every pair of pp-formulae φ/ψ and $m \in \mathbb{N}$, $|\varphi/\psi(M)| \geq m$ if and only if $|D\psi/D\varphi(M)| \geq m$.
- M is elementary equivalent to a direct sum of finite-dimensional k[t]-modules, $E_{\mathfrak{p}}[\infty] \oplus \widehat{E_{\mathfrak{p}}}$ for some prime $\mathfrak{p} \triangleleft k[t]$ and k(t).



 $\mathfrak{p} \lhd k[x]$ prime

4□ ト ← □ ト ← 亘 ト ← 亘 ・ 夕 Q で



Pseudofinite-dimensional $k\mathbb{K}_2$ -modules

$$\mathbb{K}_2 := 1 \underbrace{\overset{lpha}{\int_{eta}}}_{eta} 2$$

Pseudofinite-dimensional $k\mathbb{K}_2$ -modules

$$\mathbb{K}_2 := 1 \underbrace{\overset{lpha}{\int_{eta}}}_{eta} 2$$

Fact

The indecomposable pure-injective $k\mathbb{K}_2$ -modules are the finite-dimensional indecomposable $k\mathbb{K}_2$ -modules, $\widehat{S}_{\mathfrak{p}}$ and \mathcal{G} .

Pseudofinite-dimensional $k\mathbb{K}_2$ -modules

$$\mathbb{K}_2 := 1 \underbrace{\overset{lpha}{\int_{eta}}}_{eta} 2$$

Fact

The indecomposable pure-injective $k\mathbb{K}_2$ -modules are the finite-dimensional indecomposable $k\mathbb{K}_2$ -modules, $\widehat{S}_{\mathfrak{p}}$ and \mathcal{G} .

Theorem (G.)

The pseudofinite $k\mathbb{K}_2$ -modules are those elementary equivalent to a direct sum of finite-dimensional modules,

$$\widehat{S_{\mathfrak{p}}} \oplus S_{\mathfrak{p}}[\infty], \ \mathcal{G}, \ \bigoplus_{\mathfrak{p} \in \mathbb{P} \cup \{\infty\}} \widehat{S_{\mathfrak{p}}} \ \text{and} \ \bigoplus_{\mathfrak{p} \in \mathbb{P} \cup \{\infty\}} S_{\mathfrak{p}}[\infty].$$

-The End-

Ingredients of the axiomatisation

Fact Let \mathcal{A} be tame hereditary. For all $M, N \in \text{fin-}\mathcal{A}$, the value of $\dim \text{Hom}(M, N) - \dim \text{Ext}(M, N)$

is determined by the dimension vectors of M and N.

Ingredients of the axiomatisation

Fact Let A be tame hereditary. For all $M, N \in \text{fin-}A$, the value of

$$\dim \operatorname{Hom}(M, N) - \dim \operatorname{Ext}(M, N)$$

is determined by the dimension vectors of M and N.

Therefore, if $X, Y \in \text{fin}\mathcal{A}$ have the same dimension vector and $M \in \text{fin-}\mathcal{A}$ then

$$|\mathsf{Hom}(X,M)| \cdot |\mathsf{Ext}(Y,M)| = |\mathsf{Hom}(Y,M)| \cdot |\mathsf{Ext}(X,M)|.$$

Ingredients of the axiomatisation

Fact Let A be tame hereditary. For all $M, N \in \text{fin-}A$, the value of

$$\dim \operatorname{\mathsf{Hom}}(M,N) - \dim \operatorname{\mathsf{Ext}}(M,N)$$

is determined by the dimension vectors of M and N.

Therefore, if $X, Y \in \text{fin}\mathcal{A}$ have the same dimension vector and $M \in \text{fin-}\mathcal{A}$ then

$$|\mathsf{Hom}(X,M)| \cdot |\mathsf{Ext}(Y,M)| = |\mathsf{Hom}(Y,M)| \cdot |\mathsf{Ext}(X,M)|.$$

Fact For any $X\in \mathrm{fin}\text{-}\mathcal{A}$, there are pairs of pp-formulae φ/ψ and σ/τ such that for all $M\in \mathrm{Mod}\text{-}\mathcal{A}$

$$|\mathsf{Hom}(X,M)| = |\varphi/\psi(M)| \text{ and } |\mathsf{Ext}(X,M)| = |\sigma/\tau(M)|.$$

Let $\mathcal A$ be a finite-dimensional algebra. Let $\mathscr P/\psi$ be a pp-pair and let $\mathcal K$ be a finite set of indecomposable finite-dimensional $\mathcal A$ -modules. There is a pp-pair $[\mathscr P/\psi]_{\mathcal K}$ such that for all $K\in\mathcal K$,

$$|[arphi/\psi]_{\mathcal{K}}(K)|=1$$
 and $|[arphi/\psi]_{\mathcal{K}}(M)|=|arphi/\psi(M)|$

for all indecomposable pure-injective $M \notin \mathcal{K}$.

Let $\mathcal A$ be a finite-dimensional algebra. Let $\mathscr P/\psi$ be a pp-pair and let $\mathcal K$ be a finite set of indecomposable finite-dimensional $\mathcal A$ -modules. There is a pp-pair $[\mathscr P/\psi]_{\mathcal K}$ such that for all $K\in\mathcal K$,

$$|[arphi/\psi]_{\mathcal{K}}(K)|=1$$
 and $|[arphi/\psi]_{\mathcal{K}}(M)|=|arphi/\psi(M)|$

for all indecomposable pure-injective $M \notin \mathcal{K}$.

Theorem

Let A be a tame hereditary algebra over an infinite field. An A-module is pseudofinite-dimensional if and only if it satisfies the following sentences.

Let $\mathcal A$ be a finite-dimensional algebra. Let $\mathscr P/\psi$ be a pp-pair and let $\mathcal K$ be a finite set of indecomposable finite-dimensional $\mathcal A$ -modules. There is a pp-pair $[\mathscr P/\psi]_{\mathcal K}$ such that for all $K\in\mathcal K$,

$$|[arphi/\psi]_{\mathcal{K}}(K)|=1$$
 and $|[arphi/\psi]_{\mathcal{K}}(M)|=|arphi/\psi(M)|$

for all indecomposable pure-injective $M \notin \mathcal{K}$.

Theorem

Let A be a tame hereditary algebra over an infinite field. An A-module is pseudofinite-dimensional if and only if it satisfies the following sentences.

For all $X, Y \in \text{fin-}A$ such that X and Y have the same dimension vector and all finite sets of indecomposable finite-dimensional A-modules K,

Let $\mathcal A$ be a finite-dimensional algebra. Let $\mathscr P/\psi$ be a pp-pair and let $\mathcal K$ be a finite set of indecomposable finite-dimensional $\mathcal A$ -modules. There is a pp-pair $[\mathscr P/\psi]_{\mathcal K}$ such that for all $K\in\mathcal K$,

$$|[\varphi/\psi]_{\mathcal{K}}(K)| = 1$$
 and $|[\varphi/\psi]_{\mathcal{K}}(M)| = |\varphi/\psi(M)|$

for all indecomposable pure-injective $M \notin \mathcal{K}$.

Theorem

Let A be a tame hereditary algebra over an infinite field. An A-module is pseudofinite-dimensional if and only if it satisfies the following sentences.

For all $X, Y \in \text{fin-}\mathcal{A}$ such that X and Y have the same dimension vector and all finite sets of indecomposable finite-dimensional \mathcal{A} -modules \mathcal{K} ,

$$|[\mathsf{Hom}(X,-)]_\mathcal{K}|=1 \lor |[\mathsf{Hom}(Y,-)]_\mathcal{K}|>1 \lor |[\mathsf{Ext}(X,-)]_\mathcal{K}|>1$$

Let $\mathcal A$ be a finite-dimensional algebra. Let $\mathscr P/\psi$ be a pp-pair and let $\mathcal K$ be a finite set of indecomposable finite-dimensional $\mathcal A$ -modules. There is a pp-pair $[\mathscr P/\psi]_{\mathcal K}$ such that for all $K\in\mathcal K$,

$$|[arphi/\psi]_{\mathcal{K}}(\mathcal{K})|=1$$
 and $|[arphi/\psi]_{\mathcal{K}}(M)|=|arphi/\psi(M)|$

for all indecomposable pure-injective $M \notin \mathcal{K}$.

Theorem

Let A be a tame hereditary algebra over an infinite field. An A-module is pseudofinite-dimensional if and only if it satisfies the following sentences.

For all $X, Y \in \text{fin-}A$ such that X and Y have the same dimension vector and all finite sets of indecomposable finite-dimensional A-modules K,

$$|[\mathsf{Hom}(X,-)]_{\mathcal{K}}| = 1 \vee |[\mathsf{Hom}(Y,-)]_{\mathcal{K}}| > 1 \vee |[\mathsf{Ext}(X,-)]_{\mathcal{K}}| > 1$$

and

$$|[\mathsf{Ext}(X,-)]_{\mathcal{K}}| = 1 \vee |[\mathsf{Ext}(Y,-)]_{\mathcal{K}}| > 1 \vee |[\mathsf{Hom}(X,-)]_{\mathcal{K}}| > 1$$

-Thank you-