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Some Classical (Un)Decidable Theories of Modules

• (Szmielew 1955) Th(Mod-Z) is decidable.
• (Baur, Kokorin-Mart’janov mid 70’s) Th(Mod-k⟨x , y⟩) is

undecidable.

• (Eklof-Fischer 1972) If k is a recursive field then Th(Mod-k[x ]) is
decidable.

• (Baur 1976) Th(Mod-k[x , y ]) is undecidable.

• (Baur 1980) If k is a recursive field then the theory of k-vector
spaces with 4 specified subspaces is decidable.

• (Baur 1975) If k is a recursive field then the theory of k-vector
spaces with 5 specified subspaces is undecidable.

• (Baur 1976) Th(Mod-Z/29Z[x | x2 = 0]) is undecidable.
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Prest’s Conjecture (Mid 80s)
Let A be a finite-dimensional algebra over a recursive field. The theory of
A-modules is undecidable if and only if A is wild.



Drozd’s Dichotomy Theorem (k = k)
Finite-dimensional k-algebras split into 2 disjoint classes:

• Wild representation type:

A finite-dimensional k-algebra A is wild
if for all finite-dimensional k-algebras B there exists a
representation embedding

F : fin-B → fin-A

i.e. F is an exact k-linear functor which reflects isomorphism classes
and sends indecomposable modules to indecomposable modules.

Equivalently, A is wild if there exists a representation embedding
F : fin-k⟨x , y⟩ → fin-A.

• Tame representation type:

A finite-dimensional k-algebra A is
tame if, for every dimension d ∈ N, there are k[x ]-A-bimodules
M1, ...,Mn(d), which are finitely generated and free as k[x ]-modules,
such that almost all d-dimensional indecomposable A-modules are
of the form

k[x]/⟨x−λ⟩ ⊗k[x] Mi

for some 1 ≤ i ≤ n(d) and some λ ∈ k .
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Prest’s Conjecture (Mid 80s)
Let A be a finite-dimensional algebra over a recursive field. The theory of
A-modules is undecidable if and only if A is wild.

Wild ⇒ Undecidable (k = k)
Good partial results: The conjecture is true for finitely controlled wild
algebras + seemingly not hard to prove for particular wild algebras.

Tame ⇒ Decidable (k = k)
Verified in some special cases: Finite representation type, tame hereditary
algebras, tame concealed algebra, tubular algebras.

↷
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PFD Conjecture

Let A be a finite-dimensional algebra over a recursive field. The theory of
finite-dimensional A-modules, Th(fin-A), is undecidable if and only if A
is wild.

Theorem (Point-Prest)
Let A be a finite-dimensional algebra. If A is finite representation type
then Th(Mod-A) = Th(fin-A).

PFD: Wild ⇒ Undecidable
(k = k) Same good partial results as for Prest’s conjecture.

↷
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Tame ⇒ Decidable: What can we do?

An observation
To prove that Th(fin-A) is decidable, it is enough to show Th(fin-A) is
recursively axiomatisable.

Definition
A ring is (right) hereditary if every submodule of a projective (right)
module is projective.

Theorem (G.)
Let A be a tame hereditary algebra over an infinite recursive field k with
an algorithm which answers whether a finite system of polynomial
equations over k in finitely many variables has a solution in k.
Then Th(fin-A) is decidable.
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Path Algebras of Quivers

A quiver Q = (Q0,Q1) is a finite directed graph with vertex set Q0 and
set of arrows Q1.

The path algebra kQ of Q is the k-algebra with k-basis the paths in Q
including a (lazy) path ei for each i ∈ Q0 and multiplication of paths
given by concatenation.

Defining a kQ-module is “the same” as defining a representation of Q i.e.

((Vi )i∈Q0 , (Φα)α∈Q1)

where

• for each i ∈ Q0, Vi is a k-vector space and

• for each i
α−→ j ∈ Q1, Φα : Vi → Vj is a k-linear map.
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Tame ⇒ Decidable: What can we do?

An observation
To prove that Th(fin-A) is decidable, it is enough to show Th(fin-A) is
recursively axiomatisable.

Definition
A ring is (right) hereditary if every submodule of a projective (right)
module is projective.

Theorem (G.)
Let A be a tame hereditary algebra over an infinite recursive field k with
an algorithm which answers whether a finite system of polynomial
equations over k in finitely many variables has a solution in k.
Then Th(fin-A) is decidable.
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Model Theory of Modules

A (right) pp-n-formula (over R) is a formula φ(x) of the form

∃y1, . . . , ym
l∧

i=1

n∑

j=1

xj rij +
m∑

k=1

yksik = 0

where rij , sik ∈ R. We write ppnR for the set of right pp-n-formulae and

Rpp
n for the set of left pp-n-formulae.

For M ∈ Mod-R, we write φ(M) for the solution set of φ in M.

We order ppnR by setting φ ≥ ψ if and only if φ(M) ⊇ ψ(M) for all
M ∈ Mod-R.
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Pure-injective Modules

An embedding f : M → N is pure if for all φ ∈ pp1R ,

φ(N) ∩ f (M) = f (φ(M)).

An R-module M is pure-injective if every pure-embedding M → N splits.

Fact
Every R-module is elementary equivalent to a direct sum of
indecomposable pure-injective modules.

Example: The indecomposable pure-injective abelian groups are:

• For each p ∈ P and i ∈ N, Z/piZ.
• The Prüfer group Zp∞ .

• The p-adic group Ẑp.

• Q
↷
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Pseudofinite Abelian Groups

An abelian group is pseudofinite if it satisfies all sentences in Th(fin-Z).

Fact: There is an order anti-isomorphism D : pp1R → Rpp
1.

Theorem (Basarab; Herzog & Rothmaler)
For M ∈ Mod-Z the following conditions are equivalent.

• M is pseudofinite.

• For every pair of pp-formulae φ/ψ and m ∈ N,
|φ/ψ(M)| ≥ m if and only if |Dψ/Dφ(M)| ≥ m.

• M is elementary equivalent to a direct sum of finite abelian groups,

Zp∞ ⊕ Ẑp for some p ∈ P and Q.

Example: Let p ∈ P. For all M ∈ Mod-Z,

|xp=0/x=0(M)| = |annMp| = |Hom(Z/pZ,M)| and

|D(x=0)/D(xp=0)(M)| = |x=x/p|x(M)| = |M/Mp| = |Ext(Z/pZ,M)|.
↷
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p ◁ k[x]

Ep[∞] := lim−→Ep[i]

k[t]/p3 =: Ep[3]k[t]/⟨t⟩3 =: E⟨t⟩[3]

k[t]/⟨t⟩2 =: E⟨t⟩[2]

k[t]/⟨t⟩ =: E⟨t⟩[1] k[t]/p =: Ep[1]

k[t]/p2 =: Ep[2]

E⟨t⟩[∞] := lim−→E⟨t⟩[i] lim←−Ep[i] =: cEp
lim←−E⟨t⟩[i] =: dE⟨t⟩



Pseudofinite-dimensional k[t]-modules

An abelian group is pseudofinite if it satisfies all sentences in Th(fin-Z).

Theorem
For M ∈ Mod-k[t] the following conditions are equivalent.

• M is pseudofinite-dimensional.

• For every pair of pp-formulae φ/ψ and m ∈ N,
|φ/ψ(M)| ≥ m if and only if |Dψ/Dφ(M)| ≥ m.

• M is elementary equivalent to a direct sum of finite-dimensional

k[t]-modules, Ep[∞]⊕ Êp for some prime p◁ k[t] and k(t).

Example: Let p ∈ P. For all M ∈ Mod-Z,

|xp=0/x=0(M)| = |annMp| = |Hom(Z/pZ,M)| and
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Pseudofinite-dimensional kK2-modules

K2 := 1

α
  

β

?? 2

Fact
The indecomposable pure-injective kK2-modules are the

finite-dimensional indecomposable kK2-modules, Sp[∞], Ŝp and G.

Theorem (G.)
The pseudofinite kK2-modules are those elementary equivalent to a
direct sum of finite-dimensional modules,

Ŝp ⊕ Sp[∞], G,
⊕

p∈P∪{∞}
Ŝp and

⊕

p∈P∪{∞}
Sp[∞].
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–The End–



Ingredients of the axiomatisation

Fact Let A be tame hereditary. For all M,N ∈ fin-A, the value of

dimHom(M,N)− dimExt(M,N)

is determined by the dimension vectors of M and N.

Therefore, if X ,Y ∈ finA have the same dimension vector and M ∈ fin-A
then

|Hom(X ,M)| · |Ext(Y ,M)| = |Hom(Y ,M)| · |Ext(X ,M)|.

Fact For any X ∈ fin-A, there are pairs of pp-formulae φ/ψ and σ/τ
such that for all M ∈ Mod-A

|Hom(X ,M)| = |φ/ψ(M)| and |Ext(X ,M)| = |σ/τ(M)|.
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Fact
Let A be a finite-dimensional algebra. Let φ/ψ be a pp-pair and let K be
a finite set of indecomposable finite-dimensional A-modules. There is a
pp-pair [φ/ψ]K such that for all K ∈ K,

|[φ/ψ]K(K )| = 1 and |[φ/ψ]K(M)| = |φ/ψ(M)|
for all indecomposable pure-injective M /∈ K.

Theorem
Let A be a tame hereditary algebra over an infinite field. An A-module is
pseudofinite-dimensional if and only if it satisfies the following sentences.

For all X ,Y ∈ fin-A such that X and Y have the same dimension vector
and all finite sets of indecomposable finite-dimensional A-modules K,

|[Hom(X ,−)]K| = 1 ∨ |[Hom(Y ,−)]K| > 1 ∨ |[Ext(X ,−)]K| > 1

and

|[Ext(X ,−)]K| = 1 ∨ |[Ext(Y ,−)]K| > 1 ∨ |[Hom(X ,−)]K| > 1
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–Thank you–


