	Introduction
Generic derivations Antongiulio Fornasiero antongiulio.fornasiero@gmail.com Università di Firenze INdAM Napoli, 2025	Joint work with Giuseppina Terzo T model complete theory expanding the theory of fields of characteristic 0 T admits generic derivations if $T + {}^{*}\delta$ is a derivation" has a model completion T_g^{δ} . If T is algebraically bounded , then T admits generic derivations. T_g^{δ} inherits model theoretic properties from T : NIP, simplicity, uniform finiteness, etc. Open problem: imaginaries of T_g^{δ} ? Q. Which theories admit generic derivations? A. Algebraic geometry in a definable way inside T . How much the model theoretic properties of T are inherited by T_g^{δ} ?
A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025	0/24 A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 1/24

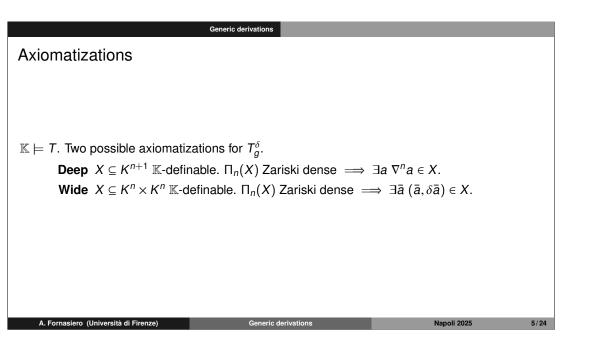
Analogous results for tuples of (non)-commuting derivations

	Introduction		
Contents			
1 Generic derivations			
2 Model theory			
3 Conjectures			
Daddy structures			
A. Fornasiero (Università di Firenze)	Generic derivations	Napoli 2025 1/2	24

T model complete <i>L</i> -theory, expanding field of char 0 If <i>T</i> is not model complete, replace it with its Morleyzation. δ new function symbol $T^{\delta} = T$ plus: Additivity $\delta(x + y) = \delta x + \delta y$ Leibniz Rule $\delta(xy) = x\delta y + y\delta x$	 ACF₀ [Robinson '59, Blum '68] RCF [Singer '78] Henselian valued fields [Point et al.] Model complete "large/ample" fields [Tressl '05]
T admits generic derivation if: exists model companion/completion T_g^{δ} of T^{δ}	A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 3/24

Generic derivations			
Algebraically bounded structure			
Definition (van den Dries '89)			
\mathbb{K} is algebraically bounded if (in a saturated extension): the field-theoretic and the model-theoretic acl coincide.			
Example			
The previous ones (ACF ₀ , RCF, HVF, model complete large fields) plus:			
 RV-expansions of HVF, 			
 "curve-excluding" fields [Johnson-Ye '23], 			
• expansion of above examples by a generic set [CP'98]			
Theorem (F-T '24)	h		
If T is algebraically bounded, then it admits generic derivation.			
Similar results for tuples of commuting or non-commuting derivations.			
A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 4/2	24		

- Main property: "additivity" of algebraic dimension.Equivalent definition: every definable function is piecewise algebraic



	Generic derivations		
The proof			
Lemma			
• (K, δ) differential field			
● F ⊇ K			
• $\bar{a} \in F^{I}$ algebraically independent over K			
• $\bar{b} \in F'$.			
Then, exists derivation ε on F :	s.t.		
1 ε extends δ ;			
$ \ \varepsilon \bar{a} = \bar{b}. $			
Moreover, such ε is unique on	the algebraic closure of $F(\bar{a})$.		
A. Fornasiero (Università di Firenze)	Generic derivations	Napoli 2025	6/24

- Similar results for a generic tuple of non-commuting derivations.
- Significantly more complicate to axiomatize a generic tuple of-commuting derivations.
- A third axiomatization in the style of Pierce-Pillay '98 is possible, but more complicate
- If *T* is not algebraically bounded, the "Wide" properties characterizes existentially closed models, but it might not be first order.

Notes

An important consequence: the class of models of \mathcal{T}^{δ} has the **amalgamation property**

Model theory	Model theory
Elimination of quantifiers	Stability
	T algebraically bounded. Theorem
We assume <i>T</i> algebraically bounded.	(1) If T is stable, then T_g^{δ} is stable.
Theorem (Strong elimination of quantifiers)	(2) If T is dependent, then T_g^{δ} is dependent.
Every L^{δ} -formula $\alpha(\bar{x})$ is equivalent, modulo T_g^{δ} , to a formula of the form $\beta(\nabla x)$, where β is an L-formula.	 Proof. Use Elimination of Quantifiers, plus: <i>T</i> is stable iff every indiscernible sequence is totally indiscernible; <i>T</i> is dependent iff every indiscernible sequence does not alternate infinitely many times.
A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 7/24	A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 8/24

Model theory	Model theory
ω -stability	Simplicity
Theorem T_g^{δ} is ω -stable iff $T = ACF_0$.	Theorem If T is simple, then T_g^{δ} is simple.
Proof.	Proof.
T is ω -stable iff it has countably many types over a countable model.	1) Forking on T_g^{δ} : $A \mid^{\delta} C \iff \nabla A \mid \nabla C$.
Theorem (Hrushovski '92)	$A \underset{B}{\stackrel{i}{\bigcup}} C \iff \nabla A \underset{\nabla B}{\bigcup} \nabla C.$
T is algebraically bounded and strongly minimal iff $T = ACF_0$	Theorem
In the case of a generic tuple of derivations,	If p is an L-type over ∇C , $p \bigcup_{\nabla B} \nabla C$, and $p \upharpoonright_{\nabla B}$ is realized by $\nabla \overline{a}$, then $\exists \overline{a}'$ s.t. $\nabla \overline{a}'$ realizes p.
$T_g^{\overline{\delta}}$ is ω -stable $\iff T = ACF_0$ and the derivations commute.	2) 🖞 satisfies assumption of Independence Theorem [Kim-Pillay '98]
A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 9/24	A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 10/24

- ∇a := (δⁿa : n ∈ ℕ) is the "Jet" of a.
 The characterization on forking on T^δ_g holds when T is simple. We don't know what happens when T is not simple.
 We have a canonical independence relation on T:

$$A \underset{B}{\bigcup}^{a} C \iff \operatorname{trdeg}(A/B) = \operatorname{trdeg}(A/BC)$$

inducing a canonical independence relation on T_g^δ :

$$A \underbrace{\mathbb{I}}_{B}^{a^{\delta}} C \iff \nabla A \underbrace{\mathbb{I}}_{\nabla B}^{a} \nabla C$$

Open core		
T has a definable topology wit	h some weak conditions:	
field topology		
every open set is Zariski open set is Zaris	dense.	
Theorem		
T is the open core of T_g^{δ} : every T_g^{δ} -definable open set is	already T-definable.	
Corollary		
If $\dim(\partial X) < \dim(X)$ for every		
If dim(∂X) < dim(X) for every then T_g^{δ} has Elimination of Im every T_a^{δ} -imaginary is inter-det	naginaries modulo T:	

Model theory	Model theory
Elimination of Imaginaries	Definable groups
Conjecture	
T_g^{δ} has elimination of imaginaries modulo T.	
Theorem	Theorem (Pillay, Point, Rideau-Kikuchi '25)
If T is simple with elimination of imaginaries, and elimination of hyperimaginaries, and	Let G be T_g^{δ} -definable. Then, G can be definably embedded in a T-interpretable group.
"inddependence over substructures",	
then T_g^{δ} has elimination of imaginaries modulo T.	
There are no known examples of simple theories which do not eliminate HI.	
Proof. [Hrushovski-Chatzidakis '99]	
A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 12/24	A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 13/24

Conjectures	Conjectures
Extending types	Monoids of derivations
$p = L^{\delta}$ -type of $ar{a}/\mathbb{K}$ $p_{ abla} = L$ -type of $ abla ar{a}/\mathbb{K}$.	Γ monoid with generators $\overline{\delta}$. $T[\Gamma]$ extension of T saying:
Question	1) $\overline{\delta}$ are derivations
(1) p definable iff p_{∇} definable.	(2) if two words in $\overline{\delta}$ are equal in Γ , they are equal as functions.
2 <i>p</i> heir/coheir of $p \upharpoonright_{\mathbb{F}}$ iff p_{∇} heir/coheir of $p_{\nabla} \upharpoonright_{\mathbb{F}}$.	Question
Should be true when <i>T</i> is dependent ,	For which Γ , $T[\Gamma]$ has a model companion?
false for pseudo-finite fields.	
A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 14/24	A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 15/24

Daddy structures
Daddy structures
T expands the theory of fields of characteristic 0. We no longer assume that T is algebraically bounded.
Definition
The algebraic dimension of a set is the Zariski dimension of its Zariski closure. <i>T</i> is daddy if it has "(uniformly) Definable Algebraic Dimension".
Theorem
T.f.a.e.:
Image:
② T is daddy;
(3) T^{δ} has a model companion T_g^{δ} ;
④ T with k (non-commuting) derivations has a model companion.
A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 16/24

- Uniform definability of a function *d* with argument a set, means that if (X_i : i ∈ I) is a definable family, then (d(X_i) : i ∈ I) is a definable function.
- Uniform definability of a property *P* means that its characteristic function is uniformly definable.

Daddy structures Proof idea	Daddy structures
Remark	
1) For every existential L^{δ} -formula $\alpha(\bar{x})$ there exists a quantifier-free <i>L</i> -formula $\beta(\bar{x}, \bar{x}', \bar{y}, \bar{y}')$ s.t. $T^{\delta} \models \alpha(\bar{x}) \iff \exists \bar{y}\beta(\bar{x}, \delta \bar{x}, \bar{y}, \delta \bar{y}).$ 2) If <i>T</i> is algebraically bounded, then for every quantifier-free L^{δ} -formula $\alpha(\bar{x})$ there exists a quantifier-free <i>L</i> -formula $\beta(\bar{x}, \bar{x}')$ s.t. $T^{\delta} \models \alpha(\bar{x}) \iff \beta(\bar{x}, \delta \bar{x}).$	Theorem Assume that T is daddy and every T-definable function is an L-term. Then, T_g^{δ} has elimination of quantifiers.
Corollary	
$\langle M, \delta \rangle$ is existentially closed iff it satisfies	
Wide $X \subseteq K^n \times K^n \mathbb{K}$ -definable. $\Pi_n(X)$ Zariski dense $\implies \exists \bar{a} \ (\bar{a}, \delta \bar{a}) \in X$.	
A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 17/24	A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 18

Daddy structures		
Uniform bounds		
Theorem (van den Dries-Schmidt '84)		
Given $d, n \in \mathbb{N}$, there exists a uniform bound $b := b(d, n)$ s.t Let:		
K field,		
I ideal in $K[X_1, \ldots, X_n]$ generated by polynomials of degree \leq	d.	
Then its radical $J := rad(I)$ is generated by polynomials of degree at most	st b.	
Moreover, $J^b \subseteq I$ and I has at most b distinct minimal overprimes, all of w	hich are genera	ted by
polynomials of degree \leq b.		
A. Fornasiero (Università di Firenze) Generic derivations	Nanali 2025	19/24
A. Formasiero (oniversità di Firenze) Generic derivations	Napoli 2025	19/24

The theorem was explcitely formulated in [Schoutens '10]

	Daddy structures		
Geometry			
$X \subseteq K^n;$ $I_K(X)$ is the ideal of X inside K $J < K[\bar{x}];$ $V_K(J)$ is the zero set of J inside K-radical of J is K-rad $(J) := I_K$	$e K^n$. $f(V_K(J))$.		
Uniform bounds for $I_{\mathcal{K}}(X)$ and G	on K -rad (J) ?		
Example			
If K is real closed, K-rad is	s the real radical.		
• If K is p-adically closed, K	-rad is the p-adic radical.		J
In the above examples uniform	bounds are known.		
A. Fornasiero (Università di Firenze)	Generic derivations	Napoli 2025	20/24

There are some results also for large fields [Sander '96]

Daddy structures	Daddy structures		
Uniform bounds in daddy structures	Examples		
	How do we show that a structure is daddy?		
	Theorem		
Theorem Assume that T is daddy. Then:	T is daddy iff $T^{\overline{\delta},c}$ (the expansion of T by k commuting derivations) and $T^{\overline{\delta},nc}$ (the expansion of T by k non-commuting derivations) have model companions/completions $T_g^{\overline{\delta},nc}$ and $T_g^{\overline{\delta},c}$.		
 T^δ_g is also daddy. For every definable family of ideals (J_t), (K-rad(J_t)) is also a definable family of ideals. 	Corollary		
 Irreducible components are uniformly definable. 	$T_g^{\bar{b},nc}$ and $T_g^{\bar{b},c}$ are also daddy.		
	Proof.		
	T_g^{δ} is daddy if $(T_g^{\delta})^{\delta_2}$ has a model companion. The latter is equal to the model companion of $T^{\delta_1, \delta_2, nc}$, which exists.		
A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 21/24	A. Fornasiero (Università di Firenze) Generic derivations Napoli 2025 22/24		

- Establishing uniform or *effective* bounds in differential algebra is an active area of research
- Only partial results for differential ideals [Harrison-Trainor, Klys, Moosa '11]

Daddy structures

Theorem (Winkler '75, Chatzidakis-Pillay '98)		
T^P has a model companion T_g^P iff T is Uniformly Finite.		
Corollary		
If T is daddy, then T_g^P is daddy.		
Proof.		
The model companion of $(T_g^{\delta})^P$ (which exists because T_g^{δ} is daddy) is the model companion of $(T_g^P)^{\delta}$.		
A. Fornasiero (Università di Firenze) Generic derivations	Napoli 2025	23/24

Daddy structures			
Questions			
Assume that T is daddy.			
Question			
Do stability/dependence/simplicity transfer to T_g^{δ} ?			
It is not true: for every L^{δ} -formula $\alpha(\bar{x})$ there exists and <i>L</i> -formula $\beta(\bar{x}, \bar{x}')$ s.t. $T_g^{\delta} \models \alpha(\bar{x}) \iff \beta(\bar{x}, \delta \bar{x}).$			
A. Fornasiero (Università di Firenze) Generic derivations Napoli 202	25 24/24		