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o-minimality and objects over the real field

Definable groups in o-minimal structures ↔ Lie groups

Forthcoming book:

A. Conversano & A. Onshuus, Lie groups and o-minimality

London Mathematical Society Lecture Notes Series, 2026.

Definable rings in o-minimal structures ↔ real associative algebras



Fixing the terminology

By ring I mean an abelian group with an associative multiplication
that distributes over the group operation on the left and on the right.

In particular, rings are not assumed to be unital nor commutative.

An associative algebra over a field K is a vector space over K

(A,+, 0, a 7→ ka)k∈K

with an associative multiplication · such that:

– (A,+, 0, ·) is a ring,

– the ring multiplication is compatible with the scalar multiplication:

∀ a, b ∈ A and ∀ k , s ∈ K (ka) · (sb) = (ks)(a · b)

If A is a unital n-dim ass. K -algebra, then A ↪→ Mn(K ).

If A is a non-unital n-dim ass. K -algebra, then A ↪→ Mn+1(K ).

In any case, every finite-dimensional associative algebra over K is K -definable

(using a fixed basis as parameters)



Previous work on definable rings in o-minimal structures

Theorem (Pillay - 1988)

F ∞ def. field =⇒ either dimF = 1 & F rcf or dimF = 2 and F = K (
√
−1), K rcf

Theorem (Otero, Peterzil, Pillay - 1996)

Let R be a definable ring in the o-minimal M. Then

R admits a definable ring-manifold structure;

if M expands a rcf K ,

R admits a definable m-differentiable ring-manifold structure for any m ∈ N,

AnnL/R(R) = {0} =⇒ R is an associative algebra over K .

Theorem (Peterzil, Steinhorn - 1999)

If a def. conn. ring R has no zero divisor, then R is a division ring & there is a def. rcf K s.t.

R = K or R = K (
√

−1) or R = H(K )



The definably connected component of zero R0 has finite index in R

(R0,+) splits in (R,+), but (R0,+, ·) may not split in (R,+, ·).

Example: Let A = (A, <,+, 0) be and ordered divisible abelian group. Fix a ∈ A, a > 0.
On [0, a[ let ⊕a be the addition modulo a. Set R = F2 × [0, a[ with operations

(t , x)⊕ (s, y) = (t + s, x ⊕a y)

(t , x)⊗ (s, y) =

{
(0, a/2) if t = s = 1
(0, 0) otherwise.

Then (R,⊕,⊗) is a A-definable ring. The definably connected component

R0 = {0} × [0, a[

has two complements in (R,⊕): G1 = {(0, 0), (1, 0)} and G2 = {(0, 0), (1, a/2)},
but neither is a subring. Note that the finite ring

F =


0 0 0

x 0 0
y x 0

 : x , y ∈ F2


embeds in (R,⊕,⊗) as a 2-torsion ideal with non-trivial intersection with R0 ⊆ Ann(R).



Main results

Theorem

Every definably connected ring that is not a null ring defines an infinite field.

Theorem

Let R be a definably connected ring. Then R is a direct product of rings

R = R0 × R1 × · · · × Rs

R0 ⊆ Ann(R), i > 0,Ri non-trivial ass. algebra over a def. rcf Ki

If N (R,+) is a direct sum of definable 1-dim subgroups,
then each Ri is a definable vector space over Ki and a definable ass. algebra.



Definability issues 1

Theorem

Let R be a definably connected ring. Then R is a direct product of rings

R = R0 × R1 × · · · × Rs

R0 ⊆ Ann(R), i > 0,Ri non-trivial ass. algebra over a def. rcf Ki

There are definable rings R such that R0 ⊆ Ann(R) cannot be chosen to be definable:

Example. Let M be the real field. Set R = R2 × [1, e[ with ring operations

(a, x , u)⊕ (b, y , v) =

{
(a + b, x + y , uv) if uv < e
(a + b, x + y + 1, uv/e) otherwise.

(a, x , u)⊗ (b, y , v) = (0, ab, 0).

Then R1 = R2 × {1} is a definable associative algebra, its additive complements are

contained in Ann(R) and none of them is definable in M.



Definability issues 2

If there is a 2-dimensional abelian torsion-free definable group that is not a direct sum of

definable 1-dimensional subgroups, it should be possible to build associative K -algebras

that are definable rings, but not definable K -vector spaces:

Example. Let (K ,+, ·) be a real closed field definable in the o-minimal structure M.

Suppose f : K × K → K is a definable 2-cocycle with the respect to +. Define on K 2:

(x , a)⊕ (y , b) = (x + y , a + b + f (x , y))

(x , a)⊗ (y , b) = (0, xy).

Then R = (K 2,⊕,⊗) is a M-definable ring. Since (K ,+) is divisible, we know that f is a

coboundary, the definable group (K 2,⊕) is isomorphic to (K ,+)2 and R is isomorphic to
0 0 0

x 0 0
a x 0

 : x , a ∈ K

 .

However, we do not know whether there is a definable 2-cocycle that is not definably

coboundary, meaning that none of the complements of the 1-dimensional definable

subgroup {0} × K in (K 2,⊕) is definable.

If there is such “bad” cocycle, the corresponding ring R is a definable ring and it is an

associative K -algebra, but the scalar multiplication K × R → R is not definable.



A natural strategy

If we are able to prove that R is a definable K -vector space, we are done:

Proposition

Let K be a definable rcf. If R is a definable ring & a definable K -vector space,

then R is a (definable) associative K -algebra.

Proof.

Note: G = (K ,+) has only the two trivial definable subgroups.

Fix u, v ∈ R and set
A = {s ∈ K : u · (sv) = s(u · v)}.

A is a def. subgroup of G and 1 ∈ A =⇒ A = G.
Now fix s ∈ K and set

B = {r ∈ K : (ru) · (sv) = (rs)(u · v)}.

Again, B is a def. subgroup of G and 1 ∈ B =⇒ B = G.

However, we know from the previous example this cannot be done in general.

We need different strategies for different kind of rings.



Nilpotent rings & a structure theorem

Theorem

Let R be a n-dimensional def. conn. ring and J(R) its Jacobson radical. TFAE:
1. R is a nilpotent ring.

2. R is a nil ring.

3. Rn+1 = {0}.

4. R = J(R).

5. Zero is the only idempotent element in R.

J(R) = {a ∈ R : ∀ r ∈ R ∃ b ∈ R such that bra − ra − b = 0}.

If R is not nilpotent, J(R) is the maximal nilpotent R-definable ideal,
it contains every nilpotent (definable or not) ideal of R,
the quotient R/J(R) is a semiprime ring, and there is a definable subring S
which is definably isomorphic to R/J(R) s.t.

R = J(R)⊕ S.



Semiprime rings

R is semiprime iff {0} is the only nilp. ideal. R is simple iff {0} & R are the only ideals.

Theorem
Let R be a definably connected ring. The following are equivalent:

(i) R is semiprime.

(ii) R is semisimple.

(iiii) J(R) = {0}.

(iv) R is a direct product of simple definable rings.

(v) R is unital and either R is a division ring or there is a (unique) finite set of
primitive orthogonal idempotents {e1, . . . , en} such that 1 =

∑n
i=1 ei and

R =
n⊕

i=1

Rei =
n⊕

i=1

ei R =
n⊕

i,j=1

ei Rej ,

where {Rei : i = 1, . . . n} is the set of minimal left ideals of R and
{ei R : i = 1, . . . n} is the set of minimal right ideals of R. Moreover, each
ei Rej is an infinite subring that is a division ring when i = j and it is a null
ring when i ̸= j .

R is semisimple iff R is Artinian & J(R) = {0}.



Semiprime rings

Theorem
Let R be a definably connected ring. The following are equivalent:

(i) R is semiprime.

(ii) R is semisimple.

(iiii) J(R) = {0}.

(iv) R is a direct product of simple definable rings.

(v) R is unital and either R is a division ring or there is a (unique) finite set of
primitive orthogonal idempotents {e1, . . . , en} such that 1 =

∑n
i=1 ei and

R =
n⊕

i=1

Rei =
n⊕

i=1

ei R =
n⊕

i,j=1

ei Rej ,

where {Rei : i = 1, . . . n} is the set of minimal left ideals of R and
{ei R : i = 1, . . . n} is the set of minimal right ideals of R. Moreover, each
ei Rej is an infinite subring that is a division ring when i = j and it is a null
ring when i ̸= j .

Example: Mn(R)× Mk (C). The primitive orthogonal idempotents from (v) are the

canonical bases of the two direct factors. This is always the case by the following:



Simple rings

Theorem

Let R be an infinite definable ring. The following are equivalent:
(a) R is simple.

(b) R is definably simple.

(c) R is definably connected and prime.

(d) There is a definable rcf K and a definably connected K -definable division
ring D such that R is definably isomorphic to Mn(D), for some n ⩾ 1.

R is semiprime iff {0} is the only nilp. ideal.

R is prime iff for all ideals I and J of R

IJ = 0 ⇒ I = 0 or J = 0.

prime ⇒ semiprime: if I ̸= {0} & Ik = {0}, set J = ⟨Ik−1⟩.



Unital rings

Given any subset X of R, R(X) denotes the smallest definable subring of R containing X ,

that we know exists by DCC on definable subgroups.

Theorem

Let R be a definably connected ring. Then R is a direct product of rings

R = R0 × R1 × · · · × Rs

R0 ⊆ Ann(R), i > 0,Ri non-trivial ass. algebra over a def. rcf Ki

If R is unital, then:
R(1) = K1 × · · · × Ks

Each Ri is a definable Ki -vector space and a definable Ki -algebra.

Consequences:

If R is unital, every ideal is definable & R is Artinian and Noetherian.



The definable unitazation R∧

Theorem

Let R be a definably connected ring. Then R is a direct product of rings

R = R0 × R1 × · · · × Rs

R0 ⊆ Ann(R), i > 0,Ri non-trivial ass. algebra over a def. rcf Ki

if R is not unital, there is a unital definable ring containing R as an ideal iff

(R0,+) is definable torsion-free and (J(R),+) is a direct sum of definable

1-dimensional subgroups

J(R) =

dim J(R)⊕
i=1

Ai ,

where each (Ai ,+) admits a definable multiplication making it a real closed field.

When this is the case, there is a smallest definably connected unital ring R∧

containing R as an ideal, and dimR∧ − dimR ⩽ dimR0 + s.

We call R∧ the definable unitazation of R.



The field case

Remarkably, the M-definable rings coincide with the K -definable rings for any o-minimal

expansion M of a rcf K (apart from the additive group):

Let R = (R,⊕,⊗) be a def. ring in an o-minimal expansion M of a rcf K . Then:

(a) either R is a finite-dimensional associative K -algebra;

(b) or R0 ⊆ Ann(R) & there is a finite subring F of R such that x ⊗ y = 0

whenever x /∈ F or y /∈ F ;

(c) or R is a direct product of rings

A × B

where A and B are as in (a) & (b) respectively.

If R is unital, then A is unital & B = F is a finite unital ring.

Question: Can the o-minimality assumption be weakened?



Finding the fields: nilpotent case - ad hoc construction



Finding the fields: semiprime case - using idempotents



Sketch of the general case



Open issues
We know that given an infinite field K , finite-dimensional associative algebras over K

and finite rings are K -definable. For which K and expansions M of K the

M-definable rings reduce to those? (as for rcf K and o-minimal expansions?)

More generally, similar strategies could be used to study definable rings in other

structures/theories.

The Jacobson radical J(R) is always R-definable and can be a general starting point.

In “good” settings, it is likely to be nilpotent.

Main o-minimal tools used here:

- A good notion of dimension.

- Finite n-torsion additive subgroup.

- DCC on definable subgroups (possibly not essential).

- The additive group of a rcf has only the trivial definable subgroups.

Main tools from ring theory used here (combined with definability are very useful):

- Brauer’s Lemma.

- Pierce decomposition (in the presence of idempotents).


